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Abstract 
Pollution transport models are based on field data and the calibration of the parameter values 
that cannot be directly measured. This combination of field data and calibrated model can 
provide an important investigative and planning tool in environmental analysis.  However, 
the calibration process for such models can be computationally very demanding if it is done 
thoroughly.  An even more serious computational burden is parameter sensitivity associated 
with models that have a large number of parameters.  This paper discusses computationally 
efficient methods for sensitivity analysis.  It also discusses applications to the large and 
highly significant Cannonsville watershed, which provides drinking water for New York 
City.  The watershed model used is SWAT.  The sensitivity analysis method is applied to 160 
parameters simultaneously.  The methodology described can also be applied to other types of 
models arising in water resources and in hydraulics. 

.  
Introduction 
 
Calibration and sensitivity analysis of watershed models is an essential component of 
planning for long-term, sustainable pollution control.   We address in this paper the 
application of calibration and a new sensitivity analysis methodology to the Cannonsville 
watershed in New York State, U.S.A.  This application  can be used to illustrate the 
synergistic significance  of computational efficiency of calibration and sensitivity analysis. 
 
Regulatory standards  for watersheds in the U.S.  are  based in part on Total Maximum Daily 
Loads (TMDL).  As a result, the focus of water quality management for materials like 
phosphorous has moved  from end of the pipe' or point source control to watershed scale 
analyses that incorporate point and non-point source pollution assessments.   The synergy  
between water, sediment transport and phosphorous transport in the watershed result in 
interactions between parameters for all these substances in their effect on model output 
predictions. As a result site-specific calibration of the model is  difficult.  We will discuss a 
proposed methods for improved computational algorithms that can significantly improve our 
scientific ability to understand, analyze, and manage complex environmental systems.  
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Application To Cannonsville Watershed 
 
The Cannonsville Reservoir in Delaware County, New York, is part of the New York City 
water supply system (Figure 1).  The reservoir’s 1178 km2 has been designated “phosphorus 
restricted” by the New York City Watershed Memorandum Agreement (MOA).  As a result, 
future development in the reservoir’s watershed is restricted.   
 
Available Data And Watershed Delineation 
 
 The Cannonsville Watershed is under careful control due to the  current phosphorus load 
restriction imposed by New York City.  As a result, a significant amount of data exists to aid 
in the development and calibration of a watershed model.  In addition, because the watershed 
model is a distributed model, it requires spatial information to accurately simulate the system.  
 
 
 Figure 2 shows the primary water quality and flow gauge locations within the watershed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Cannonsville Watershed in New York Sta
from Benaman, 2003) 
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Figure 2  Cannonsville basin showing subwatersheds and monitoring gauge locations 

 
Model Selection   
 
We determined that the most appropriate model for this scale of watershed and for long-term 
analysis was the Soil and Water Assessment Tool (SWAT Version 2000). SWAT, a semi-
distributed watershed model developed by the United State Department of Agriculture  
(USDA), has been applied throughout the United States (Cho et al. 1995; Bingner 1996; 
Arnold et al. 1998, 1999; Peterson and Hamlett 1998; Srinivasan et al. 1998; Arnold et al. 
1999; Neitsch et al. 2001).  The equations in SWAT focuses on a soil water balance.  SWAT 
simulates the water balance, along with plant growth, sediment erosion and transport, nutrient 
dynamics, and pesticides.  The model permits the incorporation of management practices on 
the land surface, including fertilizer application, livestock grazing, and harvesting operations.  
Neitsch (2001) details the full capabilities of the SWAT model. 
 
There are hundreds of parameters in SWAT.  Some of these parameters vary by subbasin, 
land use, or soil type, which increases the number of parameters substantially.  Some of these 
parameters, such as hydraulic conductivity and soil bulk density, represent measurable 
quantities and hence can be estimated directly form field data. However, a good number of 
other  parameters are empirical or SWAT-specific.  For example, SWAT uses the Modified 
Universal Soil Loss Equation (MUSLE) to estimate soil erosion (Neitsch et al. 2001).   
 
Calibration  
  
The longest-running flow gage for the watershed drains approximately 80% of the watershed.  
This was the primary calibration location.  In addition, there are gages located throughout the 
watershed that drain smaller subbasins and have shorter periods of record (~2 years).  These 
were used during the calibration procedure.  The flows were compared on a daily, monthly, 
seasonal, and annual basis to determine if there are trends in model output or error. 
 
 The response of the watershed can be assessed at varying spatial scales because SWAT is a 
spatially distributed model.  The subwatersheds established for the SWAT application to the 
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Cannonsville watershed were established based on major tributaries entering the West Branch 
Delaware River, which is the main river within the basin, and Cannonsville Reservoir.  These 
31 basins (given in Figure 2) were identified  with the aid of GIS using a digital elevation 
model and stream network (Neitsch and DiLuzio 1999).  Each subbasin is partitioned into 
Hydrologic Response Units (HRUs) that are determined by unique intersections of the land 
use and soils within the basins.  These HRUs are the spatial level at which the model 
computes the effect of  management practices such as crop growth, fertilizer application, and 
livestock management.  We established 301 HRUs for the entire basin, which is an average of 
10 HRUs per subbasin 
 
The results on calibration and validation of the SWAT model for the Cannonsville watershed 
are reported by Benaman et al. (2003) report  . The goodness-of-fit measures included percent 
differences in averages and standard deviations over the simulation period, coefficient of 
correlations (R2) and the Nash-Sutcliffe measure.  All of these measures were calculated for 
all four flow gauges draining various subwatershed sizes.  The monthly R2 values range from 
0.72 to 0.80, with the highest R2 at the Walton station, which drains 80% of the watershed 
area.  The percent difference in averages was 4% for the main discharge point at Walton  
 
Sensitivity analysis 
 
Benaman and Shoemaker (2003) developed a new methodology for sensitivity analysis 
method to deal with models with a large number of parameters.  This method is designed to 
be both computationally efficient and robust for assessing individual sensitivity analysis.  The 
robust nature of the sensitivity method is based on the use of multiple perturbation, sensitivity 
indices and output variables.   One-hundred-sixty (160) SWAT parameters were chosen out 
of over 300 potential parameters for the sensitivity analysis.  Among these 160 parameters, 
35 were basin wide, 10 varied by land use (5 land uses = 50 parameters) and 7 varied by soil 
type (10 soil types = 70 parameters).  There were also two parameters that were analyzed on 
just corn and hay areas and one parameter analyzed for pasture.  The parameter ranges were 
set through available data, literature, and suggestions from the SWAT User’s Manual. 
 
We computed “Individual Sensitivity”, which we  defined as the change in model output in 
response to change in a single parameter. The selected output variables included:  the water 
balance, sediment erosion, and available calibration stations.  Surface water runoff, 
snowmelt, groundwater flow, evapotranspiration, and sediment yield were analyzed on a 
basin wide basis.  The remaining six output variables chosen were location specific and were 
selected on the basis of the available calibration stations.   These calibration stations included 
four flow stations and two sediment-loading stations (see Figure 2). 
 
Calculating Sensitivity Index 
 
The sensitivity indices for each output variable are computed from model simulations.  A 
sensitivity index normalizes the response in the model output in comparison to changes in 
other parameters or output variables.  This normalization facilitates comparison the effects of 
one parameter value perturbation over another.  A cumulative sensitivity index can then be 
computed based on a weighting among all the individual sensitivity measures.  
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Proposed Methodology 
 
We have developed a methodology for calibration and sensitivity analysis.  The goal is to 
develop improved and computationally more efficient analysis methods that can be used to 
move from environmental field data (that are spatially and temporally distributed) and 
laboratory data to a model-based analysis that can be used to make improved forecasts, 
understand the effects of parameter values on model output, and to quantify the uncertainty 
associated with current and future events including weather 
 
Our experience with calibration and sensitivity analysis in combination with separate 
research on optimization algorithms leads to the suggestion that the following is a reasonable 
approach utilizing data and models in water resources. The proposed methodology consists of 
the following Steps.  The text in italics indicates the algorithm procedure and the normal text 
is a discussion of the algorithm. 
 
 
STEP 1: Select an initial value of the model parameters.  Many models are provided with 
default values of the parameters. 
 
STEP 2: Determine which of these parameters you want to consider changing to fit the data.  
Assume this number of parameters is K1.  For each of these values, pick a minimum and 
maximum allowable value (which can be from the literature or preferably based on 
information for the site to which the model will be applied). 
 
STEP 3: Determine which output variables we want to consider in the calibration.  The 
output variables for the Cannonsville Watershed were described above and are typical for 
watershed model.  Other applications could have other types of output variables.  For 
example with groundwater remediation, output variables that are appropriate include the total 
time required to remediate a contaminated aquifer or the amount of contamination leaving a 
remediation site. 
 
STEP 4: Do a “hand calibration of the model parameter values to observed data to get an 
initial estimate of the best sets of parameter values. Most models involve hand calibration, 
but we suggest that the entire process by spending only a short time on Step 4 to see if Step 5 
and Step 6 can identify better calibration solutions more quickly than is possible with hand 
calibration. 
 
STEP 5: Let i=1.  Perform the robust sensitivity analysis proposed in Benaman and 
Shoemaker (2003) to select the K2 most important parameters.  
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RESULTS 
 
Table 1 shows the selection of output variables to be considered, Table 2 shows the weights 
given to different output variables. Table 3 shows the ranking of parameter values given 
those weights on the output variables. 
  
 
 
Table 1 Output Variables Chosen for Sensitivity Analysis 
Output Variable Summarized Possible Influence 
Surface water runoff 
Snowmelt 
Groundwater flow 
Evapotranspiration 
Sediment yield 

Average 
annual value 
over entire 
simulation 

period 

Basinwide 
management 

Flow at Beerston (USGS Gauge #01423000) 
Flow at Trout Creek (USGS Gauge 
#0142400103) 
Flow at Little Delaware River (USGS Gauge 
#01422500) 
Flow at Town Brook (USGS Gauge #01421618) 
Sediment load at Beerston 
Sediment load at Town Brook 

Monthly average 
over entire 
simulation 

Calibration/in-
stream processes 

 
 

Table 2 Weighting Distributions (βm) Selected for Sensitivity Analysis 
Weighting Method 

Output Variable 

A. 
Equal Weight 

B. 
Focus on 
Beerston 

C. 
Focus on 

Calibration* 

D. 
Focus on Basinwide 

Management 
Surface water runoff 0.091 0.125 0.0 0.125 
Snowmelt 0.091 0.0714 0.0 0.125 
Groundwater flow 0.091 0.0714 0.0 0.125 
Evapotranspiration 0.091 0.0714 0.0 0.125 
Sediment Yield 0.091 0.125 0.0 0.5 
Flow @ Beerston 0.091 0.125 0.437 0.0 
Flow @ Trout Creek 0.091 0.0714 0.026 0.0 
Flow @ Town Brook 0.091 0.0714 0.018 0.0 
Flow @ Little Delaware River 0.091 0.0714 0.065 0.0 
Sediment load @ Beerston 0.091 0.125 0.437 0.0 
Sediment load @ Town Brook 0.091 0.0714 0.018 0.0 

• βm for this case is equal to subwatershed area of gauge/total area considered in sensitivity analysis 
 

 6



Table 3  Each parameter was subject to two perturbation methods and two 
sensitivity indices (e.g. 4 cases). The percentages below are how often among 
these 4 cases was the parameter in the top 20 parameters.  Hence if the 
parameter has a 100%, it means in all possible combinations of perturbation 
methods and sensitivity indices, the parameter was always in the top 20 
parameters.  More emphasis should be placed on parameters that are important 
for many weights (i.e. in many columns) and for many combinations of 
perturbation method and sensitivity indices. 
 

 

Weighting Method A Weighting Method B Weighting Method C Weighting Method D

All Equal Weights Focus on Beerston Focus on Calibration
Focus on Basinwide 

Management
APMBASIN 100 100 100 100
BIOMIXBASIN 100 100 100 100
CN2CSIL 100 100 100 100
CN2FRSD 100 100 100 100
CN2PAST 100 100 100 100
RSDCOPAST 100 100 100 100
SLSUBBSNBASIN 100 100 100 100
SMFMNBASIN 100 100 100 100
T_BASEPAST 100 100 100 100
T_OPTPAST 100 100 100 100
USLEKNY129 100 100 100 100
ESCONY129 100 75 75 100
SMTMPBASIN 100 75 75 100
LAT_SEDBASIN 100 50 100 100
CN2HAY 75 75 75 75
ESCONY132 75 75 75 50
GWQMNBASIN 75 75 75 75
TIMPBASIN 75 50 75 75
BIO_MINPAST 75 50 50 75
ROCKNY132 75 25 50 50
REVAPMNBASIN 50 50 50 75
ROCKNY129 50 25 50 25
USLEPCSIL 25 25 50 25
HVSTICSIL 25 25 25 50
USLECPAST 25 25 25 25
SMFMXBASIN 25 0 0 50
GSIPAST 0 0 25 0
ROCKNY026 0 0 25 0

Percentage of times in the 'Top 20'
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CONCLUSIONS 
 
 
Models arising in water resources and hydraulics can have a large number of parameters and 
a large number of data are available for calibrating the model.  The techniques described in 
this presentation describe computationally efficient ways for improving calibration and 
sensitivity analysis.  The method is robust in that it evaluates results in terms of  alternative 
ways of perturbation, sensitivity indices and model outputs.  The number of simulations 
required is 2*(number of parameters)*φ, where φ is the number of perturbations methods 
used.  Φ is two in the numerical results used here, but  φ  could be 1 if  the model is 
expensive to simulate.  The number of output variables and number of different weights has a 
negligible effect on computation time assuming the simulation takes at least one minute and 
is even more neglibible for simulation times that are longer. 
 
This approach can be used as a stepping stone to uncertainty analysis since it identifies the 
parameters that should be considered in both combined sensitivity analysis (i.e. looking at 
effects of uncertainties in combinations of parameters) and in uncertainty analysis involving 
stochastic methods like Monte Carlo Simulation or response surfaces. 
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